Question
Bank 
Subject
Code:2141005
Subject
Name: Signals and Systems
Prepared
by: Prof. A.K.Giri
| 
   
Q.1  For each of the following systems 
 | 
  
   | 
 
i)                   
y(t) = x(t-2) + x(2-t) 
ii)                 
y(n) = nx(n) 
determine
which of properties “memoryless”, “time invariant”, “linear”, “casual” holds
and justify your answer.
| 
   
Q2  Using the convolution integral to find
  the response y(t) of the LTI system with 
 | 
  
   | 
  
   | 
 ||||
| 
   
impulse 
 | 
  
   
response 
 | 
  
   
h(t) = e −β t u(t) 
 | 
  
   
to
  the input  x(t) =e −α t u(t) for α = β and 
 | 
  
   | 
  
   | 
 |
| 
   
α ≠ β . 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 
| 
   
Q.3    Determine the Fourier transform of each
  of the following signals: 
 | 
  
   | 
  
   | 
 ||||
| 
   
i) 
 | 
  
   | 
  
   
−αt 
 | 
  
   | 
  
   
α > 0 
 | 
  
   | 
  
   | 
 
| 
   | 
  
   | 
  
   | 
 ||||
| 
   
x (t)
  = e 
 | 
  
   
cos ω 0 t u(t), 
 | 
  
   | 
  
   | 
 |||
| 
   
ii) 
 | 
  
   | 
  
   
1 −n 
 | 
  
   | 
  
   | 
  
   | 
 |
| 
   
x[n] = 
 | 
  
   | 
  
   
u[ − n −1] 
 | 
  
   | 
  
   | 
  
   | 
 |
| 
   | 
  
   | 
  
   
2 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
 
| 
   
Q4  Determine the Fourier series
  representations for the signal x(t) shown in figure 
 | 
  
   | 
  
   | 
 ||||
| 
   
below. 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 

| 
   | 
  
   | 
  
   | 
  
   | 
  
   
OR 
 | 
  
   | 
  
   | 
 ||||
| 
   
Q5  Let x(t) be a
  periodic signal whose Fourier series coefficients are 
 | 
  
   | 
  
   | 
 ||||||||
| 
   | 
  
   
2, 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
k = 0 
 | 
  
   | 
  
   | 
 |
| 
   
ak 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 
| 
   
= 
 | 
  
   
j( 
 | 
  
   
1 
 | 
  
   
) 
 | 
  
   | 
  
   
k 
 | 
  
   | 
  
   
, otherwise 
 | 
  
   | 
  
   | 
 |
| 
   | 
  
   | 
  
   | 
  
   | 
 |||||||
| 
   | 
  
   | 
  
   
2 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 |
Use Fourier series
properties to answer the following questions:
(a)   
Is
x(t) real ? 
(b)  
Is
x(t) even ? 
(c)    Is
dx(t)
even ? dt 
        
Q6 Consider a causal and stable LTI system S whose input
x[n] and output y[n] are 07 related through the second-order difference
equation
y[n] − 16 y[n− 1] − 16 y[n− 2] = x[n].
1
ii)                 
Determine
the impulse response h[n] for the system S. 
| 
   
Q7  State and prove the following properties
  of the Fourier transform. 
 | 
  
   | 
 
i)                   
Time
Shifting 
ii)                 
Time
Scaling. 
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||||
| 
   
           Q8 
 | 
  
   | 
  
   
Determine the z-transform for the
  following sequences. Sketch the pole-zero 
 | 
  
   | 
  
   | 
 |||||||||||||||
| 
   | 
  
   | 
  
   
plot and
  indicate the ROC. Indicate whether or not the Fourier transform of the 
 | 
  
   | 
  
   | 
 |||||||||||||||
| 
   | 
  
   | 
  
   
sequence exists. 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||||
| 
   | 
  
   | 
  
   
i) 
 | 
  
   
δ[n+5] 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 |||
| 
   | 
  
   | 
  
   
ii) 
 | 
  
   | 
  
   
1 n 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||
| 
   | 
  
   | 
  
   | 
  
   
u[3 −n] 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 |||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   
4 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||
| 
   | 
  
   
Q9  Determine the Laplace transform and the associated
  region of convergence and 
 | 
  
   | 
  
   | 
 ||||||||||||||||
| 
   | 
  
   | 
  
   
pole zero plot for each of the
  following functions of time: 
 | 
  
   | 
  
   | 
 |||||||||||||||
| 
   | 
  
   | 
  
   
i) 
 | 
  
   
x(t) = e −2 t u(t) +e −3t u(t) 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 |||
| 
   | 
  
   | 
  
   
ii) 
 | 
  
   
x(t) = δ (t) +u(t) 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 |||
| 
   
    Q10 
 | 
  
   | 
  
   
Using the long division method,
  determine the sequence that goes with the 
 | 
  
   | 
  
   | 
 |||||||||||||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   
1− 
 | 
  
   | 
  
   
1 
 | 
  
   | 
  
   
−1 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
2 
 | 
  
   | 
  
   
z 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||||
| 
   | 
  
   | 
  
   
following z-transforms:
  x[z] = 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
and x[n] is right sided. 
 | 
  
   | 
  
   | 
 |||||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
1 
 | 
  
   | 
  
   | 
  
   | 
  
   
−1 
 | 
  
   | 
  
   | 
 ||||||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   
1+ 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
2 
 | 
  
   | 
  
   
z 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 |
| 
   | 
  
   
Q11  Explain with example the properties and
  importance of LTI Systems. 
 | 
  
   | 
  
   | 
 ||||||||||||||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||||
| 
   
Q12 
 | 
  
   | 
  
   
Consider a
  causal LTI system whose input x[n] and output y[n] are related by 
 | 
  
   | 
  
   | 
 |||||||||||||||
| 
   | 
  
   | 
  
   
the difference equation 
 | 
  
   | 
  
   
1 y[n− 1] + x[n]. 
 | 
  
   | 
  
   | 
 |||||||||||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   
y[ n ] = 
 | 
  
   | 
  
   | 
 |||||||||||||
| 
   | 
  
   | 
  
   
Determine y[n] if x[n] = δ [n−1] 
 | 
  
   | 
  
   
4 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 |||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 |||||
| 
   
Q13 
 | 
  
   | 
  
   
Using the Partial fraction
  method, determine the sequence that goes with the 
 | 
  
   | 
  
   | 
 |||||||||||||||
| 
   | 
  
   | 
  
   
following z-transforms: X
  (z) = 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
3 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
and x[n] is
  absolutely summable. 
 | 
  
   | 
  
   | 
 |||||
| 
   | 
  
   | 
  
   
z − 
 | 
  
   
1 
 | 
  
   
− 
 | 
  
   
1 z−1 
 | 
  
   | 
  
   | 
  
   | 
 |||||||||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
4 
 | 
  
   | 
  
   
8 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||
| 
   
Q14 
 | 
  
   | 
  
   
List the properties of the region
  of convergence (ROC) for the z-Transform. 
 | 
  
   | 
  
   | 
 |||||||||||||||
| 
   | 
  
   
Q15 
 | 
  
   
Consider the signal 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
1 
 | 
  
   | 
  
   
n 
 | 
  
   | 
  
   | 
  
   
π 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 |||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
cos 
 | 
  
   
n 
 | 
  
   
,
  n ≤ 0 
 | 
  
   | 
  
   | 
 |||||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 |||||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
3 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   
x[n] = 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
4 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||||
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
n > 0 
 | 
  
   | 
  
   | 
 |
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   
0 
 | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 ||
Determine the poles and ROC for X[z].
| 
   | 
  
   | 
  
   | 
  
   | 
  
   | 
  
   | 
 
| 
   
Q16  Compute and plot the convolution y[n]
  = x[n]*h[n] where 
 | 
  
   | 
  
   | 
 |||
| 
   
1, 
 | 
  
   
3 ≤ n ≤8 
 | 
  
   
and 
 | 
  
   | 
  
   | 
 |
| 
   
x[n]= 
 | 
  
   
0, 
 | 
  
   
otherwise 
 | 
  
   | 
  
   | 
 |
| 
   | 
  
   | 
  
   | 
  
   | 
 ||
| 
   
1, 
 | 
  
   
4 ≤ n ≤15 
 | 
  
   | 
  
   | 
  
   | 
 |
| 
   
h[n]= 
 | 
  
   
0, 
 | 
  
   
otherwise 
 | 
  
   | 
  
   | 
  
   | 
 
| 
   | 
  
   | 
  
   | 
  
   | 
 ||
Q17
Determine whether or not each of the following signals is periodic. If the
signal 07 is periodic, determine its fundamental period.
i)                     
x(t) = [cos(2 t−π3 )]2 
ii)                     
x[n] = cos(n2 π8 ) 
 and GTU QUESTION PAPER WINTER 15
No comments:
Post a Comment