Question
Bank
Subject
Code:2141005
Subject
Name: Signals and Systems
Prepared
by: Prof. A.K.Giri
Q.1 For each of the following systems
|
|
i)
y(t) = x(t-2) + x(2-t)
ii)
y(n) = nx(n)
determine
which of properties “memoryless”, “time invariant”, “linear”, “casual” holds
and justify your answer.
Q2 Using the convolution integral to find
the response y(t) of the LTI system with
|
|
|
||||
impulse
|
response
|
h(t) = e −β t u(t)
|
to
the input x(t) =e −α t u(t) for α = β and
|
|
|
|
α ≠ β .
|
|
|
|
|
|
|
Q.3 Determine the Fourier transform of each
of the following signals:
|
|
|
||||
i)
|
|
−αt
|
|
α > 0
|
|
|
|
|
|
||||
x (t)
= e
|
cos ω 0 t u(t),
|
|
|
|||
ii)
|
|
1 −n
|
|
|
|
|
x[n] =
|
|
u[ − n −1]
|
|
|
|
|
|
|
2
|
|
|
|
|
Q4 Determine the Fourier series
representations for the signal x(t) shown in figure
|
|
|
||||
below.
|
|
|
|
|
|
|
|
|
|
|
OR
|
|
|
||||
Q5 Let x(t) be a
periodic signal whose Fourier series coefficients are
|
|
|
||||||||
|
2,
|
|
|
|
|
|
k = 0
|
|
|
|
ak
|
|
|
|
|
|
|
|
|
|
|
=
|
j(
|
1
|
)
|
|
k
|
|
, otherwise
|
|
|
|
|
|
|
|
|||||||
|
|
2
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
Use Fourier series
properties to answer the following questions:
(a)
Is
x(t) real ?
(b)
Is
x(t) even ?
(c) Is
dx(t)
even ? dt
Q6 Consider a causal and stable LTI system S whose input
x[n] and output y[n] are 07 related through the second-order difference
equation
y[n] − 16 y[n− 1] − 16 y[n− 2] = x[n].
1
ii)
Determine
the impulse response h[n] for the system S.
Q7 State and prove the following properties
of the Fourier transform.
|
|
i)
Time
Shifting
ii)
Time
Scaling.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
Q8
|
|
Determine the z-transform for the
following sequences. Sketch the pole-zero
|
|
|
|||||||||||||||
|
|
plot and
indicate the ROC. Indicate whether or not the Fourier transform of the
|
|
|
|||||||||||||||
|
|
sequence exists.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
i)
|
δ[n+5]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
ii)
|
|
1 n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
u[3 −n]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
Q9 Determine the Laplace transform and the associated
region of convergence and
|
|
|
||||||||||||||||
|
|
pole zero plot for each of the
following functions of time:
|
|
|
|||||||||||||||
|
|
i)
|
x(t) = e −2 t u(t) +e −3t u(t)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
ii)
|
x(t) = δ (t) +u(t)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Q10
|
|
Using the long division method,
determine the sequence that goes with the
|
|
|
|||||||||||||||
|
|
|
|
1−
|
|
1
|
|
−1
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
2
|
|
z
|
|
|
|
|
|
|
|
|
||||
|
|
following z-transforms:
x[z] =
|
|
|
|
|
|
|
|
and x[n] is right sided.
|
|
|
|||||||
|
|
|
|
|
1
|
|
|
|
−1
|
|
|
||||||||
|
|
|
|
1+
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
2
|
|
z
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q11 Explain with example the properties and
importance of LTI Systems.
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
Q12
|
|
Consider a
causal LTI system whose input x[n] and output y[n] are related by
|
|
|
|||||||||||||||
|
|
the difference equation
|
|
1 y[n− 1] + x[n].
|
|
|
|||||||||||||
|
|
|
|
y[ n ] =
|
|
|
|||||||||||||
|
|
Determine y[n] if x[n] = δ [n−1]
|
|
4
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
Q13
|
|
Using the Partial fraction
method, determine the sequence that goes with the
|
|
|
|||||||||||||||
|
|
following z-transforms: X
(z) =
|
|
|
|
|
3
|
|
|
|
|
and x[n] is
absolutely summable.
|
|
|
|||||
|
|
z −
|
1
|
−
|
1 z−1
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
4
|
|
8
|
|
|
|
|
|
|
|
||
Q14
|
|
List the properties of the region
of convergence (ROC) for the z-Transform.
|
|
|
|||||||||||||||
|
Q15
|
Consider the signal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
1
|
|
n
|
|
|
π
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
cos
|
n
|
,
n ≤ 0
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
x[n] =
|
|
|
|
|
|
4
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n > 0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
|
|
|
Determine the poles and ROC for X[z].
|
|
|
|
|
|
Q16 Compute and plot the convolution y[n]
= x[n]*h[n] where
|
|
|
|||
1,
|
3 ≤ n ≤8
|
and
|
|
|
|
x[n]=
|
0,
|
otherwise
|
|
|
|
|
|
|
|
||
1,
|
4 ≤ n ≤15
|
|
|
|
|
h[n]=
|
0,
|
otherwise
|
|
|
|
|
|
|
|
Q17
Determine whether or not each of the following signals is periodic. If the
signal 07 is periodic, determine its fundamental period.
i)
x(t) = [cos(2 t−π3 )]2
ii)
x[n] = cos(n2 π8 )
and GTU QUESTION PAPER WINTER 15
No comments:
Post a Comment